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Abstract. Two-dimensionalangularcorrelation of positronannihilation radiation (2D-ACAR)
experiments provide a means of determining the electron–positron momentum density in metals
and alloys over a wide range of temperatures. A difficult task regarding this method is the recon-
struction of the three-dimensional density from a limited number of two-dimensional projections.
Difficulties arise from noise superimposed on the data. This paper explains and demonstrates
the use of awaveletnoise filter, and gives a comparison of wavelet and Fourier filters.

1. Introduction

The analysis of experimental data is often based on the linear expansion of the measured data
in complete and orthogonal function bases. Such an expansion (or transform, synonymously)
into a different domain can be useful for filtering data and/or extracting information. As
an example, the Fourier expansion using basis functions of the form eikx yields direct
information about wavenumber and phase, while losing any spatial information.

In two-dimensional angular correlation of positron annihilation radiation (2D-ACAR)
experiments, 2D projections of the electron–positron momentum density of a solid are mea-
sured [1]. The 3D density must be reconstructed from these projections. A reconstruction
scheme proposed by Cormack for x-ray tomography [2, 3] and later adapted for 2D-ACAR
by Kontrym-Sznajd [4] has proved adequate for retrieving high-resolution three-dimensional
distributions from 2D-ACAR data. The adaptation was necessary due to the limited number
of projections (typically five) in 2D-ACAR experiments, as opposed to x-ray tomography.
Although the algorithm yields realistic results, it introduces features in some reconstructions
which cannot be inferred from the projections. This work shows that a simplewaveletnoise
reduction filter can efficiently reduce the appearance of these artefacts.

2. Wavelet expansion

2.1. Basic concepts

A novel area of applied mathematics is the variety ofwaveletexpansions [5, 6]. A one-
dimensional wavelet basis is a set of functions9j,k obeying

9j,k(x) = 2j/290,0(2
j x − k) (1)
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90,0(x) =
√

2
∞∑

l=−∞
vlϕ(2x − l) (2)

ϕ(x) =
√

2
∞∑

l=−∞
ulϕ(2x − l) (3)

wherej , k, andl are integers,ul andvl are complex coefficients, andϕ(x) is the so-called
scaling function. The coefficientsul andvl determine the properties of the wavelet basis.
ϕ(x) is given byul andvl through (3), although it is not practically obtained in this way.
Any well-behaved functionf (x) can then be expanded as

f (x) =
∑
j,k

wj,k9j,k(x) (4)

wherewj,k are the coefficients representingf in the wavelet domain. If the9j,k are
orthonormal, thewj,k are given by

wj,k =
∫ ∞
−∞

9j,k(x)f (x) dx (5)

where the bar denotes complex conjugation.
In the particular case of thereal Daubechies classn wavelets(n even) [6], the coefficients

ul andvl are real, and onlyn of each are non-zero. The values of these elements are given
by orthonormality of the9j,k and by the conditions∫ ∞

−∞
xi9j,k(x) dx = 0 i = 0, 1, . . . ,

n

2
− 1. (6)

The Daubechies coefficientsul and vl and thus the wavelet basis are fully determined by
equation (6) and the orthonormality conditions.

The wavelet basis functions (often referred to as wavelets) are generally localized inboth
real and wavenumber space. Figure 1 shows selected Daubechies wavelets in real space,
visualizing their localization. The Daubechies wavelets even exhibit compact support in
real space, which means that9j,k(x) is zero outside a finite interval inx. The localization
makes it possible to approximate most well-behaved functions with high accuracy as a linear
combination of a small number of wavelets.

Another significant difference between the wavelets and conventional bases is the fact
that the wavelets within a basis are derived from the others by shifting (x → x − k) and
scaling (x → 2j x), according to (1). This indirectly implies thattwo indices, j (scale)
and k (position) are required to identify a wavelet, as opposed to asingle parameter in
conventional bases (e.g. the wavenumber in the Fourier case).

2.2. Discrete wavelet transforms

On one hand, the definition of wavelets in (1)–(3) appears to be impractical for numerical
calculations. On the other hand, a corresponding discrete transform can be defined in analogy
with the discrete Fourier transform. This involves matrix multiplications, the matrices being
usually highly sparse and easily computable given the coefficientsul andvl . The knowledge
of the scaling functionϕ(x) is not required for the discrete transform. In the Daubechies
case, the implementation is in fact easier than in the case of the Fourier transform [7]. The
sample wavelets in figure 1 were calculated using the inverse discrete wavelet transform.
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Figure 1. One-dimensional real Daubechies class 6 wavelets. The integer indices for scaling
(j ) and shifting (k) range from−∞ to∞ in order to make the wavelet basis complete.

2.3. Multi-dimensional wavelets

Like any other one-dimensional expansion, the wavelet expansion can be extended to
functions of arbitrary dimensionN by defining the basis functions as a product of the
one-dimensional basis functions:

9
(N)
j1,k1,...,jN ,kN

(x1, . . . , xN) =
N∏
i=1

9
(1)
ji ,ki
(xi). (7)

Numerically, the transform can be reduced to subsequent one-dimensional transforms, thus
allowing straightforward implementation.

3. De-noising

Conventional methods for data de-noising, such as Fourier filters, essentially blur the data
while removing noise. This is partially a consequence of the de-localization of the basis
functions. Due to their localization both in real and wavenumber space, wavelets can be
efficiently used for de-noising without blurring the useful part of the data [8]. Therefore,
even a simple algorithm can lead to significantly lower noise while leaving the resolution
unchanged:

(i) transform the data into the wavelet domain;
(ii) set those elements in the wavelet domain to zero whose absolute values are smaller

than a certain threshold;
(iii) transform the modified wavelet-domain data back to the real domain.
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Figure 2. Cross-sections along the M–0–M direction through the reconstructed electron–positron
momentum densityρ(k) of a GdY alloy. The broken line shows the reconstruction from the
original 2D-ACAR data. The full lines were obtained by reconstructing after processing through
the Daubechies class 6 wavelet filter. The arrows indicate the important feature whose sharpness
should be retained.
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Figure 3. Cross-sections along the M–0–M direction through the reconstructed electron–positron
momentum densityρ(k) of a GdY alloy. The broken line shows the reconstruction from the
original 2D-ACAR data. The full lines were obtained by reconstructing after processing through
the Fourier filter.
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The efficiency of this method was tested, using the Daubechies class 6 wavelet transform.
Five projections obtained from 2D-ACAR measurements of a Gd70Y30 alloy at≈50 K were
filtered using this wavelet thresholding, prior to reconstruction using the Cormack method.
The effect of the filter is shown in figure 2. The steps indicated by the arrows separate
two sheets of the Fermi surface from each other—their sharpness should be retained by the
filter—whereas the ‘bumps’ around the M and the0 points are believed to be a consequence
of noise. In fact these bumps disappear if one reduces the number of terms in the polynomial
expansion used to describe the electron–positron momentum density, thus lowering the
overall resolution of the reconstruction technique and its sensitivity towards noise.

As demonstrated in figure 2, the wavelet filter is capable of removing the unwanted
features in the reconstruction without smoothing the important details. As the threshold is
increased, the amplitude of the noise-related ‘bumps’ is decreased considerably before the
sharpness of the steps separating the Fermi edges is affected. In the present case the ratio
of cancelled wavelet coefficients varies between 95% and 99%, according to the threshold.

4. Comparison with Fourier de-noising

An analogous thresholding algorithm can be implemented using the Fourier transform
instead of the wavelet transform. Figure 3 shows the results of such a filter, for comparison
with figure 2. Again, equal thresholds were used for all projections, and the numbers of
cancelled coefficients were similar to those for the corresponding wavelet case. Figures 2
and 3 demonstrate that the Fourier filter inevitably smooths the important features while
removing the noise-related ones. Unlike in the case of the wavelet filter, efficient removal of
noise cannot be combined with sufficient resolution. Furthermore, the value of the threshold
is critical in the Fourier case. A slight change in the threshold can result in a significant
change in the appearance of the artefacts. A smooth, monotonic variation of their amplitudes
with the threshold value like that in the wavelet case cannot be observed.

5. Results

As the present investigation has shown, there are two significant differences between the
behaviours of the wavelet and the Fourier filters.

(i) The blurring of the data: a measure of the resolution is the sharpness of the ‘step’ in
the density between the0 and M points. This step is a vital part of the electron–positron
momentum density and should remain sharp. Figures 2 and 3 show that the Fourier method
lowers the resolution to a larger extent than the wavelet method.

(ii) Predictability: the wavelet filter is more predictable than the Fourier filter. In
the wavelet case, the effect of thresholding varies monotonically with the threshold. The
threshold is more critical in the Fourier method.

The wavelet filter seems to remove noise efficiently. In 2D-ACAR in particular, it
offers the possibility of detecting and removing unreal features in the reconstructed electron–
positron momentum density.

Acknowledgments

One of the authors (AGM) wishes to express his thanks to the Studienstiftung des deutschen
Volkes eV, Germany, and the Nuffield Foundation, UK, for financial support. Generous
financial support from the EPSRC, UK, is also gratefully acknowledged.



Wavelet de-noising of 2D-ACAR 10299

References

[1] Berko S 1979Proc. 5th Int. Conf. on Positron Annihilation (ICPA-5)ed R R Hasiguti and K Fujiwara (Sendai:
Japanese Institute of Metals) p 65

[2] Cormack A M 1963 J. Appl. Phys.34 2722
[3] Cormack A M 1964 J. Appl. Phys.35 2908
[4] Kontrym-Sznajd G 1989Solid State Commun.70 1011
[5] Walker J S 1997Not. Am. Math. Soc.44 658
[6] Daubechies I 1988Comment. Pure Appl. Math.41 909
[7] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992Numerical Recipes in C2nd edn (Oxford:

Oxford University Press)
[8] Donoho D L 1993Proc. Symp. Appl. Math.47 173


